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Abstract: Cancer is one of the deadliest diseases worldwide, and there is a critical need for diagnostic
platforms for applications in early cancer detection. The diagnosis of cancer can be made by identify-
ing abnormal cell characteristics such as functional changes, a number of vital proteins in the body,
abnormal genetic mutations and structural changes, and so on. Identifying biomarker candidates
such as DNA, RNA, mRNA, aptamers, metabolomic biomolecules, enzymes, and proteins is one of
the most important challenges. In order to eliminate such challenges, emerging biomarkers can be
identified by designing a suitable biosensor. One of the most powerful technologies in development
is biosensor technology based on nanostructures. Recently, graphene and its derivatives have been
used for diverse diagnostic and therapeutic approaches. Graphene-based biosensors have exhibited
significant performance with excellent sensitivity, selectivity, stability, and a wide detection range.
In this review, the principle of technology, advances, and challenges in graphene-based biosensors
such as field-effect transistors (FET), fluorescence sensors, SPR biosensors, and electrochemical biosen-
sors to detect different cancer cells is systematically discussed. Additionally, we provide an outlook
on the properties, applications, and challenges of graphene and its derivatives, such as Graphene
Oxide (GO), Reduced Graphene Oxide (RGO), and Graphene Quantum Dots (GQDs), in early cancer
detection by nanobiosensors.

Keywords: graphene; cancer biomarkers; nanobiosensor; biosensing method; diagnostic applications

1. Introduction

Cancer is the leading cause of mortality worldwide [1,2]. Cancer occurs when normal
cells in a certain part of an organ begin to grow out of control. Cancer cells can invade
adjacent tissues and finally spread to other regions of the organ. In general, cancer cells are
produced from normal cells due to unrepairable DNA damage [3]. It is estimated that the
world’s population will reach 8.3 billion by 2025, of which more than 20 million modern
cases of cancer will be reported each year [4]. Diagnosing cancer in its early stages and
providing prompt and appropriate treatment are essential elements in cancer control [5].
Early detection of cancer means the detection of tumors in the early stages of its devel-
opment, and therefore it is expected that with this strategy, the process of recovery will
advance [6]. By the time symptoms become visible, cancer may have begun to expand
and be harder to treat. Several screening tests have been shown to detect cancer early and
reduce mortality. The United States National Cancer Institute (NCI) defines a biomarker
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as “a biological molecule found in blood, other body fluids, or tissues that is a sign of a
normal or abnormal process or of a condition or disease. A biomarker may be used to
see how well the body responds to a treatment for a disease or condition”. In the early
stages of cancer, there is only a low level of biomarkers. For this reason, ideally, biomarker
identification should be conducted with high sensitivity. Genomic and proteomic detection
methods such as polymerase chain reaction (PCR), Southern blot, DNA sequencing, liq-
uid chromatography mass spectrometry (LC-MS), and immunoassay techniques such as
enzyme-linked immunosorbent assay (ELISA) are also used to diagnose cancer. These tests
are not sensitive enough to detect low concentrations of biomarkers in the early stages of
cancer, so false-negative results can be obtained, and also these methods are very expensive
and technically complex for routine clinical diagnoses [7]. Other methods of diagnosing
cancer, such as CT scans, imaging, laboratory tests, tumor biopsy, endoscopic examination,
and surgery, can be used. For example, CT scans can examine tissues inside the body
and their shape and improve diagnostic decisions by extracting 3D imaging features that
provide important information for diagnosing possible diseases, but show poor soft-tissue
contrast resolution, and their ability to distinguish between benign and malignant lesions
is limited [8]. However, these common standard methods for diagnosing and treating
cancer are costly, time-consuming, and require advanced facilities [6]. The importance
of human health has led to the introduction of many clinical tests to diagnose cancers,
and there is a growing need to develop more sensitive, accurate, faster, and cheaper tests.
Challenges in detecting cancer biomarkers, such as the diversity of cancers and the limited
ability of a biomarker to detect all cancers of specific organs with high specificity, have
encouraged researchers to make great efforts to identify biomarkers without biopsy. In this
regard, biosensors are a very promising tool for the possibility of sensitive, specific, and
non-invasive diagnosis for early detection of cancer. Effective, accurate methods of cancer
detection and clinical diagnosis are urgently needed. Biosensors are devices that are de-
signed to detect a specific biological analyte by essentially converting a biological entity
(i.e., protein, DNA, RNA) into an electrical signal that can be detected and analyzed [7].

Biosensor technology is a growing field to satisfy the need for sensitive and rapid
detection problems [9]. In addition to the use of commercial SPR-based biosensors using the
Kerchman plasma excitation scheme [10], in recent years, the use of optical, electrochemical,
piezoelectric, and other types of biosensors has shown successful results in low concentra-
tions of biomarkers for the detection of cancers including breast cancer, lung cancer, and
prostate cancer [11]. In fact, with the proliferation of biosensors capable of detecting cancer
early, a major revolution has taken place in the field of cancer diagnosis [12]. Biosensors
are a set of components that record a physical, chemical, or biological change and convert
it into a measurable marking [13]. The main parts of biosensors include the bioreceptor,
transducer, and read-out system [14]. The bioreceptor reacts with the target substance and
is usually composed of an antibody, aptamer, cell, or enzyme. Another essential part is
the transducer, which must convert the biological signal into a measurable signal. The
transducer can be electrochemical, optical, or mechanical [15]. Finally, the read-out sys-
tem displays the final response and reads the measured signal [14,15]. Electrochemical
biosensors provide high sensitivity and selectivity for vital biomarkers that are responsible
for vital molecular events in tumor formation and progression [16]. In fact, in addition to
differentiating tumor cells from normal cells, these sensors lead to the targeted diagnosis of
localized tumor cells and circulating tumor cells. Electrochemical sensors are suitable tools
for cell counting, cell classification, and the detection of tumor cells. In the diagnosis of
tumor cells, electrochemical biosensors achieve not only high sensitivity (limit of detection
of 10 tumor cells in a 250 µL sample) and high specificity but also diagnose duplicate
antigens at the tumor cell surface and successfully prevent false-positive results [17].

In electrochemical biosensors, a redox reaction takes place between the bioreceptor and
the target molecule [18]. The reaction in the electrochemical transducer requires a reference,
counter, and working electrode, the working electrode acts as a transducer [19], and tumor
antigens are used as biomarkers for cancer diagnosis in biosensors [20]. The ultimate goal of
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biosensors is to detect signals specific to each disease and cancer, and recently nanoparticles
have been widely used in the design of biosensors. These nanoparticles can react with the
analyte in the sample and increase the detection range [21,22]. Nanostructured materials
as guiding elements in biosensors that increase the stability of bioreceptor loading at
the electrode surface by providing a more electroactive surface using functional groups.
There are various purposes for using nanoparticles to make nanobiosensors, including
increasing the surface to stabilize biomaterials and thus increasing sensitivity, catalyzing
the process, large dynamic range, the possibility of reacting at low potentials, and helping
the quick transfer of electrons from the active center of the electrode surface reaction in the
electrochemical nanobiosensors [23]. Nanoparticles can be easily fabricated using chemical
methods and react with the analyte in the sample, and their inherent properties, such
as optical or magnetic properties, can be used [24,25]. Graphene and its derivatives are
nanoparticles with unique properties and have many applications in nanobiosensors [26].
Graphene is a two-dimensional (2D) sheet of carbon atoms in a hexagonal (honeycomb)
configuration that is an allotrope of carbon [27,28]. Graphene sheets are formed by placing
carbon atoms side by side, and in a graphene sheet, each carbon atom is bonded to three
other carbon atoms [29]. These three bonds are on the same sheet, and the angles between
them are equal to 120◦. The length of the C-C bond in graphene is about 0.142 nm [30]. The
inherent strength of graphene layers results from these bonds, known as covalent bonds [31].
While the carbon bonds are sp2 hybridized, and the σ C-C bond is the strongest bond in
materials, the pi (π) bond is responsible for the electron conduction of graphene [32]. With
these unique structural properties, graphene has been shown to have special properties
and has attracted much interest in scientific research [33]. Graphene transfers heat better
than any alternative material and is an excellent electrical conductor with unique optical
properties. The derivatives of graphene such as Graphene Oxide (GO), Reduced Graphene
Oxide (RGO), and Graphene Quantum Dots (GQDs) have entered the field of graphene
research and nanobiosensors because of their unique properties [33]. GO is a derivative
of graphene that is obtained by graphite using oxidizing materials [34]. GO is one typical
2D structured and oxygenated planer molecular material. RGO is a reduced form of GO
that contains a π-conjugated system. The only major difference between GO and RGO is
the number of oxygen atoms present and their conductivity [35]. RGO has low electrical
conductivity due to the disruption of the main structure of graphene, but it has a high
ability to be functionalized with a variety of chemical and biological molecules. GQDs
consist of one or a few layers of graphite and are smaller than 100 nm [36]. GQDs have
been studied in recent years because of their unparalleled structure and properties, and
their dimensions are about 1 to 10 nanometers [37]. Much of the research mentioned in this
review is based on technical and technological developments that cover a wide range of
topics and many variables. In order to use this basic information in discovering biomarkers
for disease prevention and clinical use, comprehensive studies are needed as the first step in
marker and biosensor development research. It will be possible exclusively through specific
studies on the technological variety of biosensors to control possible systemic and random
errors to perform their evaluation in clinical use. Therefore, the biosensors reported in
this study are considered as proposed biosensors that should be targeted in future studies
rather than biosensors that have matured for use in clinical practice.

2. Graphene-Based Materials and Their Properties

The physical properties of carbon materials are related to their hybridization stats
(sp, sp2, sp3) [38–41]. Graphene with sp2 hybridization is a fine and zero bandgap semi-
conductor, but the sp3 hybridization diamond is a hard insulator. Graphene is highly
thermally conductive, chemically stable, and flexible [42]. One of the superior properties
of graphene is that its charge carriers treat as massless particles, and they can move with
little scattering in an ambient condition [43]. The charge transport of graphene and its
electronic properties are due to its great electronic band structure [44]. Especially among all
nanomaterials, graphene has a wide surface area (2630 m2g−1) [32,33] and is available for
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direct interaction with many biomolecules [45]. It can be wielded with structural defects
using low-cost fabrication methods by chemical modification [46]. The sensitivity of the
electrical resistance of graphene to the adsorption makes it highly useful for highly sensitive
sensing applications [42].

Other unique properties of graphene, including its optical, magnetic, and high elastic-
ity, make it a suitable monolayer structure for preparing several graphene-based nanocom-
posites. Graphene has one of the highest tensile strengths of all materials and a high
Young’s modulus, which is the relation between stress and strain, that gives graphene
its great mechanical properties [47,48]. Using graphene in several sensing applications
based on an electrochemical read-out has been offered in various chemical and biologi-
cal sensors [49]. Graphene derivatives, such as GO and RGO, have been consumed for
the fabrication of a diverse range of graphene-based nanocomposites in biosensors by
a mixture of metal and biomolecules with enhanced sensitivity [42,50]. Because of the
great surface-to-volume ratio and functional chemical groups, GO has broad capacities
for the adsorption of biomolecules [51]. GO is composed of graphene layers with active
oxygen-containing functional groups on its surface, such as hydroxyl, epoxy, and carboxyl.
GO has unique physicochemical properties such as its small size between 20 nm–100 nm,
conductivity, and optical and electronic properties [52,53]. Furthermore, GO is hydrophilic
and water soluble, whereas graphene is hydrophobic and does not dissolve easily in wa-
ter [33]. GO has a significantly disrupted sp2 carbon network and shows many defects,
and functional groups make its insulators [32]. GO is not conductive and has reduced
mechanical properties compared to graphene. Accordingly, to improve the conductivity of
GO, it is necessary to convert GO into RGO. Graphene nanomaterials can be successfully
functionalized through non-covalent or covalent interactions. Typical covalent reactions in-
clude oxidation, reduction, radicals, and nucleophilic/electrophilic additives(Figure 1) [54].
RGO is produced by removing the functional groups from GO, which partly restores the
mechanical and electrical conductivity properties of the graphene layers, and reduction is
a process in which sp3 carbons are converted to sp2 carbons. The electrical, thermal, and
mechanical properties of RGO and graphene are similar [55]. RGO exhibits excellent elec-
trochemical behavior such as lower oxidation potential, making it a promising candidate
in the fabrication of biosensors. The cost-effectiveness and the controllability of the O2
functional groups make RGO crafty for biological applications [56]. RGO has been explored
in the fabrication of electrochemical biosensors because its defects and chemical groups
simplify charge transfer [57–59]. GQDs are known as a new type of zero-dimensional
(0D) fluorescent nanomaterial [60]. GQDs expose terrific optoelectronic properties and
excellent biocompatibility [61]. These GQDs are superior in chemical inertness, simplicity
of production, and low cytotoxicity, and for this reason are appropriate in biosensors [13].
GQDs have the carboxyl and hydroxyl groups at their plane edge, allowing them to expose
high water solubility [62].
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Figure 1. General representation of functionalization possibilities for graphene nanomaterials.
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3. Graphene-Based Materials Synthesis Methods

Usual sensing methods are expensive, require high-accuracy equipment and costly
reagents, and the majority of reactions are not quantifiable in real-time. Graphene-based
sensors are now being used as another method for the identification of cancer-related
biomolecules. Graphene and its derivatives must be produced at a low cost to fabricate
biosensors for early cancer detection successfully. The synthesis of graphene can be applied
in two main ways: top-down (destruction) and bottom-up (construction) methods [63].
Most of the top-down approaches are very scalable and produce high-quality products.
These methods can convert major precursors such as graphite and other carbon-based raw
materials to nano-sized graphene, and in this method, graphite is used directly as a raw
material for the synthesis of graphene. The bottom-up methods synthesize graphene and
its derivatives using other carbon sources instead of graphite. In these methods, carbon
compounds in the phase of gas, liquid, or solid are used [64]. The bottom-up methods make
graphene-based materials with vast surface area and defect-free sheets [65]. An overview
of graphene synthesis methods is shown in the Figure 2.
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3.1. Top-Down Methods

The top-down approaches such as arc discharge [66], oxidative exfoliation reduc-
tion [67], mechanical exfoliation [68], unzipping of carbon nanotubes (CNT) [69], and
liquid-phase exfoliation (LPE) [70,71] delaminate the layer of graphite to a single-, bi- and
few-layer graphene (An example is given in Figure 3).
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interaction with naphthalene. Reprinted with permission from ref. [72]. Copyright 2014, Elsevier.

As shown in Figure 4, in the arc discharge method the reaction container consists of a
carbon precursor and graphite bar that are submerged in liquid media or sometimes in a
gas, and the electrical current produces a great temperature plasma up to 3727–5727 ◦C [65].
Arc discharge could produce graphene at an affordable cost. In this method, a carbon
precursor is an anode, and the graphite bar is the cathode. Graphene can be synthesized by
discharging through an electric arc between the two electrodes. IN addition, the oxidative
exfoliation reduction method is used for the synthesis of GO or RGO. There are four primary
paths for GO synthesis: Hofmann, Brodie, Hummer, and Staudenmaier [73,74]. For the
synthesis of GO by Hummer’s method [75], first, 1 g of graphite powder was appended to
20 mL of H2SO4. The solution was put in the ice bath and stirred for a few minutes on the
stirrer. Then, 3 g of KMnO4 was added to the mentioned solution to turn the color of the
solution green. After 5 min, 50 mL of distilled water was added dropwise to the obtained
solution, and after 10 min, 100 mL of distilled water was added. Finally, 35 mL of H2O2 was
appended to the solution and stirred for 24 h to synthesize GO well. As always, process
safety and environmental cost need to be considered during process scale-up. Recently,
the Hummer’s method has been used for the synthesis of GO because it is a fast and safe
process [75].
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3.2. Bottom-Up Methods

The bottom-up approaches include chemical vapor deposition (CVD) [64], Substrate-
Free Gas-Phase synthesis (SFGP) [77], template route [78], and total organic synthesis.
The chemical vapor deposition (CVD) method is a well-known method for the production
of thin films and nanoparticles. CVD decomposes hydrocarbon gases at a high temperature
(650–1000 ◦C). These hydrocarbon gases can be methane (CH4), acetylene (C2H2), ethylene
(C2H4), and hexane (C6H14), to grow graphene sheets on metallic catalysts such as Cu and
Ni [72,79]. The carbon precursor separates free carbon and atoms of hydrogen by contacting
the hot surface of the metal catalyst. Then, the carbon atoms spread over the surface [80,81].
Methane gas decomposes its components by passing through a metal scaffold (such as a
Ni plate) at high temperatures to gradually form a graphene film on the metal scaffold.
Using HCL, a scratch is made on the platform to separate the graphene deposit from the Ni
scaffold [82,83]. Alternatively, techniques for the synthesis of graphene by freeze-drying
during the chemical vapor deposition method are used. Then, through compensating by
passing CO2, the deposition of GO is formed on the metal plate and at the end reduced
to graphene. Graphene deposition scratches from metal plates are separated by HCL.
In another method called epitaxial growth, utilizing carbon solubility in various substrates
is a method used to produce graphene layers. The process begins by giving the substrate
intense heat, and it allows the carbon to dissolve. This heat depends on the properties
of the substrate. The carbon source can be added to the substrate using hydrocarbon
molecules. The whole sample is then slowly cooled, reducing the solubility of carbon
in growth, resulting in carbon atoms separating from the mass of matter and forming
graphene islands on its surface. Different metals and compounds such as Ruthenium (Ru),
nickel (Ni), and silicon carbide (SiC) can be used in this process [84,85]. Graphene can be
prepared by thermal decomposition at 1200–1600 ◦C of SiC under vacuum [86]. SiC was
used under a high-temperature sublimation and remained on the surface of the particles.
By controlling the growth conditions, carbon atoms can be arranged to form a graphene
layer. As the growth process progresses, new graphene layers are formed between the
current graphene layers and the SiC surface; subsequently, the second layer is formed
below the first layer. Therefore, the formation of graphene is highly dependent on the
structure of the SiC surface. The most common SiC structures used for this method are
4H-SiC and 6H-SiC [87,88]. In substrate-free gas phase (SFGP), that is a novel way for the
synthesis of graphene by gas-phase reaction sans the presence of substrates [77]. In this
way, a mixture of liquid ethanol and Argon (Ar) gas is transferred to a microwave-produced
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plasma, and graphene is organized when the ethanol droplets are evaporated and separated
in the plasma region [89]. From 164 mg·min−1 of ethanol, 2 mg·min−1 was produced [90].
However, this method does not have general parametric studies, and more research is
needed. This method provides clean and high-quality graphene [90].

4. Modification of Graphene by Different Types of Biorecognition Elements

Biosensors are diagnostic tools defined as having a biorecognition element for analyte
specificity and a transducer for a measurable signal. There are various measurement
methods for measuring biomarkers, and electrochemical measurement methods can be
divided into the following categories:

1. Amperometry, the most widely used technique for detecting cancer cells and cancer
biomarkers, continuously measures the current resulting from the oxidation or reduction
of an electrical species in a biochemical reaction.

2. Chronoamperometry, in which a square wave potential is applied to the working
electrode and a steady-state current is measured as a function of time. Potentiometers de-
termine the difference in electrical potential between two electrodes when the cell current is
zero. Potentiometric measurements are made through the Nernst equation, the relationship
between concentration and potential. In fact, in this method, the measurement of potential
is performed as a function of time in response to a constant current or a square wave.

3. Voltammetry is an electro-analytical method that measures current through ana-
lytical potential change information. Due to the different methods of measuring potential
change, there are also different voltammetric methods, such as cyclic voltammetry (CV), re-
ciprocating voltammetry, linear sweep voltammetry (LSV), differential pulse voltammetry
(DPV), square wave voltammetry (SWV), and adsorptive stripping voltammetry (AdSV).
Among the various voltammetric methods, SWV and DPV are often used due to their high
sensitivity [91].

Many biorecognition elements have been used, ranging from naturally occurring
to synthetic constructs (Figure 5). Naturally occurring biorecognition elements, such
as antibodies, nucleic acids, and enzymes, are biologically derived constructs that take
the benefit of naturally evolved physiological interactions to attain analyte specificity.
Synthetic biorecognition elements are artificially engineered structures extended to imitate
physiologically defined interactions.

The limit of detection (LOD) is commonly used as evidence of the quality of a biosensor.
The limit of detection is expressed in units of concentration and, following the IUPAC
definition, indicates the smallest solute concentration that a given analytical system is able
to distinguish with reasonable reliability of a sample without an analyte. The biorecognition
element describes both the selectivity and the sensitivity of diagnostic devices. Between the
nanomaterials worked for biosensor fabrication, graphene and its derivatives have been
displaying the most promise, since they present an enhanced signal response in a variety
of sensing usages [80,81]. In addition, graphene-based nanomaterials have a high surface
area and excellent biocompatibility with certain types of biomolecules, such as antibodies,
enzymes, DNA, and cells [92]. In the following, eminent biorecognition elements are briefly
summarized to serve as a deputy of each category. Nucleic acids and antibodies are more
or less used as biorecognition elements to detect cancer or their biomarkers [91]. Cancer
biomarkers are biological molecules produced by the body or tumor in a person with cancer.
Biomarker testing helps characterize alterations in the tumor. Biomarkers can be DNA,
RNA, protein, or metabolomic profiles that are specific to the tumor. Therefore, a biomarker
is extremely important for the early detection and treatment of cancer. DNA–graphene
hybrids are mainly manufactured by the ultrasonication-driven self-assembly process [93].
P. Abdul Rasheed et al. [94] have manufactured a graphene-based electrochemical DNA
biosensor for femtomolar detection of the breast cancer-related BRCA1 gene. Aptamers
and various types of receptors, such as enzymes and antibodies, and other biorecognition
elements can be immobilized through covalent and noncovalent bonds on the graphene
surface. Immobilization is one of the most complex phases in the fabrication of a sensor,
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and the election of the adequate method for immobilization belongs to the physicochemical
conditions of the transducers and receptors [95]. Multiple strategies have been extended to
immobilize enzymes onto graphene surfaces to make enzyme-based biosensors. The most
common methods are mixing, ultrasound, and cyclic voltammetry. These manners allow
the adhesion of the enzymes by adsorption, covalent bonding, or physical entrapment [96],
and adsorption belongs to physical immobilization and is often used for sensors that
have enzyme receptors. The next method is chemical immobilization, which is generally
based on creating a chemical bond amongst the functional groups on the surface of the
transducers and the receptors. It usually happens via cross-linking chemical reagents
such as hexamethylenediamine, glutaraldehyde, etc. Cross-linking is part of the covalent
binding that results in strong, highly stable, and impressive binding. Moreover, graphene
can prepare a charged region for the adsorption of any charged molecules or metal ions
as an interaction in an empty defect. The functionalized region of graphene is capable of
directly binding to nanoparticles, enzymes, antigens, antibodies, DNA, and other particular
molecules [97]. In general, the purpose of using different types of biorecognition elements is
to detect specific molecules, and the types of these biorecognition elements were mentioned
in the previous sections. Using these biorecognition elements, the surface of graphene is
modified so that they can detect it by connecting to an analyte or target. Functionalized
graphene is also more efficient because by functionalizing graphene, the modification is
improved using biorecognition elements and leads to better target detection. The types of
biorecognition elements used in graphene-based biosensors are shown in Table 1.

Table 1. Types of biorecognition elements used in graphene-based biosensors for the detection of
various cancer biomarkers.

Biorecognition
Element Sensor Type Design Method Biomarker LOD Linear Range Ref.

Aptamer Electrochemistry GE/RGONs/Rh-
NPs HER2-ECD 0.667 ng/mL 10.0–500.0

ng/mL [98]

Antibody Electrochemistry
COOH-

AgPtPd/NH2-
RGO

PSA 4 fg mL−1 4 fg mL−1 to
300 ng mL−1 [99]

Antibody Electrochemistry
Graphene-poly

(3-aminobenzoic
acid)

PSA 0.13 pg 0.01–80 ng/mL [100]

Antibody Electrochemistry RGO PSA 2 pg/mL 0.06
ng/mL

1–36 ng/mL
0.0018–41.15

ng/mL
[101]

Aptamer Electrochemistry GO-carbon
nanotubes –hemin CEA 0.82 fg/mL 1 fg/mL–10

µg/mL [102]

Antibody SPR GO Cytokeratin 19 1 fg/mL 1 fg/mL−1

ng/mL
[103]

Antibody SERS GO-AgNPs PSA 0.23 pg/mL 0.5–500 pg/mL [104]

Antibody Electrochemistry Ag-RGO/CysA-
AuNPs CA15-3 15 U·mL−1 15–125 U/mL [105]

cell Electrochemistry Ag-TiO2/RGO CEA 20.5 fg·mL−1 - [106]

Aptamer Electrochemistry Amino
FG-THI-AuNPs CEA 2 pg·mL−1 0.01–500 ng

mL−1 [107]

ss DNA Electrochemistry NFG/AgNPs/PANI miRNA-21 0.2 fmol·L−1 10 fM–10 µM [108]

Aptamer Electrochemistry RGO/Au
TiO2/CQDs PSA 0.007 ng mL−1 0.5–7 ng mL−1 [109]
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5. Graphene-Based Biosensors
5.1. Graphene-Based FET Biosensors

Over the last few decades, attempts have been made to utilize semiconductor field-
effect transistors (FETs) in biological and chemical sensors due to their well-characterized
behavior and ease of use of portable devices. In addition, the electrical measurement of
bimolecular interactions is particularly desirable due to its adequacy for low-cost mobile
sensors that could be used in the area by non-technical individuals [110]. FET-based biosen-
sors are excellent candidates for several label-free transducers. They have gained much
more attention in recent years for their considerable advantages, such as high scalability,
ultra-sensitivity, rapid real-time analysis, inherent amplification, reduced power needs, di-
rect electrical read-out, and low-cost bulk development, as opposed to surface plasmon res-
onance, microcantilever sensors, fluorescence instruments, and other approaches [12,111].

An FET-based biosensor includes three electrodes—the source, the drain, and the gate—
such that the section between the drain and the source functions as a biological detection
component that interacts with the target analyte/biomolecules and senses their presence,
concentration, and electrical activity. The biosensor then converts the biological information
directly into a detectable signal [112]. Subsequently, based on the implementation, the signal
acquired can be illustrated, amplified, stored, and analyzed or sent to the data center for
additional processes (Figure 6) [113]. The function of the FET-based biosensor can be
encapsulated as: (1) an alteration in the concentration of the sample solution leads to a
difference in the charge close to the interface of the sensor; (2) this shift of charge causes
a decrease in the effective gate voltage; (3) this variation in the effective gate voltage
contributes to a change in the current flow of the drain [114].

Due to the linear dispersion relation of the charge carriers in graphene, they have a
very small effective mass and excellent carrier mobilities [115]. Furthermore, graphene-
based nanomaterials have high thermal conductivity, as well as availability and low cost.
The charge transfer nature of graphene enables a special channel material that replaces sili-
con and other common semiconductors. In comparison to other semiconductors, graphene
does not require impurity doping to conduct electricity. It demonstrates self-doping phe-
nomena that cause the carrier type and concentration to be regulated with the aid of an
external electrical field. The alternating ability between GFET’s n- and p-channel varies
from other FET technologies [116–118].
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As a conductive channel substrate, many findings have been obtained through research
on the contact resistance between graphene and metal to enhance the efficiency of the field-
effect transistor. In addition, the need for high carrier mobility and luxurious functional
groups has prompted a great deal of effort, such as the heating-assisted spray system for
manufacturing mass production of RGO sheets and the interlayered quantum dots for
elevating carrier mobility. Biocompatibility, ease of functionalization, and biocatalysis in
the oxygen reduction reaction (ORR) are other outstanding features of graphene-based
nanomaterials that are useful in the fabrication of GFETs for ultrasensitive and low-noise
cancer detection [118–120].

It is important to maintain the stability of the antibody-modified surface during
FET measurements. However, unlike other measurement methods, FET measurements
use an electrical application on the gate area that can damage the surface. Electrical
application may repel antibodies that are immobilized on the surface. Thus, preserving
antibody-modified FET properties during measurements improves the reliability of FET
antigen detection. Hidshima et al. evaluated three types of FET-modified antibodies to
measure stability. The change in FET properties was determined three times in a row by
calculating the change in the amount of threshold voltage change (Cv). Modified Cv FET
with electrically activated antibodies showed good stability [121].

In 2017, Zhou et al. developed and characterized a label-free antibody-modified
graphene immunosensor based on a noncovalent modification to detect carcinoembryonic
antigen (CEA). In this study, anti-CEA was immobilized in a single-layer graphene channel
using a PYR-NHS linker. The anti-CEA-modified GFET could achieve a limit of detection
(LOD) of CEA less than 100 pg·mL−1 in real-time, with the minimal nonspecific binding
of non-target proteins [122]. In other research, Chen et al. used a polypeptide functional-
ized RGO-FET biosensor to accurately detect the matrilysin (MMP-7) in clinically relevant
concentrations. This biomarker specifically digests negatively charged JR2EC immobi-
lized on RGO, thereby modulating the conductance of RGO-FET. The proposed assay has
demonstrated the detection of MMP-7 in human plasma with an LOD of 40 ng·mL−1 [123].

In 2013, Kim et al. applied the R-GO FFET for label-free ultrasensitive diagnosis of a
prostate cancer biomarker of α1-antichymotrypsin (PSA-ACT). When PSA-ACT complexes
were placed on the R-GO channel substrate using monoclonal PSA, it caused a linear
reaction of the gate voltage (∆Vg, min), caused by the protein–protein interactions on
the R-GO FET sensor. They reported this detection of protein–protein interactions up to
the femtomolar level with a dynamic range over six orders in the Vg, using minutes of
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the alteration as a sensitivity parameter. Finally, the R-GO FET biosensor successfully
demonstrated high specificity in the diagnosis of SA-ACT of the femtomolar level [124].

To increase the electrochemical reactivity of the FET biosensor system, Majd et al.
designed an ultrasensitive aptasensor system based on multi-walled carbon nanotubes
and RGO for label-free detection of ovarian cancer antigen 125 (CA125). The sensor has a
simple design based on the noncovalent bonding of MWCNTs/conjugated aptamers on
multilayer Graphene Oxide nanosheets and its integration with polymethyl methacrylate
(PMMA) as a suitable substrate for designing flexible field-effect transistors. The presence of
MWCNTs caused the immobilization of molecules due to the high surface-to-volume ratio.
The designed aptasensor for CA125 (1.0 × 10−9–1.0 U/mL) demonstrated a wide linear
dynamic range with a low detection limit of 5.0 × 10−10 U/mL. During the process, the
proposed FET currents are present in the presence of various interfering species commonly
found in biological fluids, including CEA (1.0 × 10−3 U/mL), AFP (1.0 × 10−3 U/mL), and
CA15-3 (1.0 × 10−3 U/mL). Comparison with CA125 (1.0 × 10−5 U/mL) was measured.
According to the values measured in the bar graph of Figure 7, the flow reduction is relative
to the void (0.0 U/mL CA125) for CEA (1.4%), AFP (1.5%), and CA15-3 (3.2%), significantly
smaller than that produced by CA125 (40.4%). These results confirm that the response
of the RGO FET biosensor is induced by the binding of CA125 marker tumor to CA125
aptamer. In addition, the aptasensor successfully passed the CA125 detection test in real
human serum samples [125].
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5.2. Graphene-Based Surface Plasmon Resonance (SPR) Biosensors

SPR-based technologies have proven to be one of the most effective tools for real-
time tracking of molecular dynamics, alongside quantitative measurement of numerous
biomarkers such as proteins, DNA, entire cells, etc. [126–128]. One of the most critical
aspects of the SPR biosensors is the surface of the sensor, as it plays a crucial role in the
overall efficiency of the sensor. Many experiments have also concentrated on the use
of smart sensing layers for more adjustable implementations [129–131]. SPR sensing is
a powerful, label-free method for investigating noncovalent molecular interactions as a
non-invasive method, and in the last two decades, SPR has been widely used in the study
of noncovalent protein–DNA, protein–cell, DNA–RNA, DNA–DNA, protein–protein, etc.,
interaction experiments [132].

SPR biosensors have the potential for extensive implementation in biomarker diagnos-
tics due to the very high surface plasmons’ sensitivity to the alternation in the reflective
index (RI) of the dielectric medium. Interaction between the immobilized receptors on the
metal surface and the analyte molecules causes a variation in the sensed medium’s refrac-
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tive index (dielectric), which leads to an alteration in the propagation constant of the surface
plasmons. This phenomenon affects the resonance condition of surface plasmons with
specific surface plasmon waves (SPW) that have interactions with the incident p-polarized
light of the same propagation constant. The energy of light photon transfers to the surface
plasmons at the resonance angle, and the reflectance of the light significantly decreasing,
results in forming a sharp dip in the SPR curve (reflectance with respect to the incident
angle) [133,134]. The measured interacting optical wave can be used to fabricate various
types of SPR biosensors with angular, intensity, phase, or wavelength modulation [135].
The Kretschmann configuration is the most common type of SPR setting based on atten-
uated total reflection for surface plasmons’ excitation [136]. Principles of SPR biosensor
shown in Figure 8.
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Phase detection based on coherence is usually very sensitive to mechanical movements
in optical components and ambient noise, which leads to phase measurement errors. The
stability of the SPR biosensor in the time axis is also required to monitor the biological
response over time.

Wang et al. evaluated an efficient SPR phase biosensor for targeted drug delivery
screening. The sensitivity of the sensor was determined by the SPR signal of a set of
concentrations of sodium chloride solution, and its stability was estimated by oscillating the
SPR signal of the system during the 80 min measurement process with a sample containing
0.9% sodium chloride. A significant reduction in ideal stability noise of 6 × 10−7 RIU/RU
was reported during the 80 min measurement, which is similar to several high-sensitivity-
phase SPR systems [137].

Graphene-based nanomaterials have a very high surface-to-volume ratio, which en-
hances the biosensor sensitivity due to the efficient light absorbing on the sensing layer
by p–p stacking interaction between biomolecules’ carbon-based ring structure hexagonal
units of graphene sheets [138]. Other superiorities such as high optical transparency, low
reluctance, high carrier mobility, and tunability are also very promising for the fabrication
of highly sensitive SPR biosensors [139–142]. It has been indicated both theoretically and
experimentally that graphene-based nanomaterials are capable of effective excitement and
propagation of surface plasmons [143,144]. Although the utilization of graphene-based
nanomaterials can significantly enhance the sensitivity to the RI change of the SPR biosen-
sor due to its extraordinary optical absorption and plasmonic characteristics, often the
signal-to-noise ratio (SNR) and quality factor (QF) of the biosensor can adversely be re-
duced [145]. Multiple graphene layers will raise the full width at half maximum (FWHM)
in the SPR curve by widening the reflectance dip and also reducing the depth of the dip,
so the resolution of the biosensor decreases as well [140]. Therefore, synthesizing novel
graphene-based nanomaterials that can eliminate these drawbacks and maintain or even
augment their advantages are of high priority in the SPR biosensor fabrication.

Biplob Hossain et al. conferred numerical modeling of a graphene-coated fiber-optic
surface plasmon resonance (SPR) biosensor for detection of genetic biomarkers involved
in early breast cancer by means of DNA hybridization. The technique used in this sensor
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is based on the attenuated total reflection (ATR) method to detect the hybridization of
deoxyribonucleic acid (DNA) with individual point mutations in the BRCA1 and BRCA2
genes. To detect breast cancer biomarkers (916delTT and 6174delT), SPR and SRF angles can
be used, which are insignificant for uncoordinated DNA strands, while being a significant
complement to DNA strands. As shown in Figure 9, due to the addition of the shDNA
(pDNA) sequence to the assay medium, the RI increases due to the increase in the assay
concentration and eventually shifts the θSPR and SPRF curves. Complete hybridization
of 916delTT and 6174delT with pDNA can be understood by shifting the θSPR and SPRF
curves to the right. In fact, RI changes due to the stabilization of different concentrated
biomarkers of breast cancer DNA molecules (916delTT and 6174delT), which affects the
SPRF and SPR curves. Changing the θSPR and SRF graphs to the right indicates the
detection of 916delTT-specific mutations and the 6174delT interaction with pDNA, which
also indicates the diagnosis of breast cancer. Additionally, numerical results showed that
the use of graphene could be more sensitive compared with the usual SPR biosensors [139].
Furthermore, in another study, Habib et al. compared the performance of a graphene-MoS2
layered surface plasmon resonance (SPR) biosensor with a graphene-coated SPR biosensor.
The numerical values obtained showed that the SPR biosensor coated with graphene-MoS2
compared to a single layer of graphene SPR biosensor is 175% more sensitive [146]. In other
research, Wang et al. proposed a dual-channel fiber-optic SPR-LSPR biosensor. In this
sandwich structure, the sensing channel was coated with a goat anti-human IgG-modified
Au/GO bilayer to detect human IgG-labeled AuNPs. The presence of GO increased the
loading of biomolecules, so the response signal was strengthened. The biosensor had an
index sensitivity of 13,592 nm·RIU−1 with the LOD of 15 ng·mL−1, which was 15.3 times
lower than the conventional SPR biosensor for detection of the same biomarker [147].
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5.3. Graphene-Based Fluorescent Biosensors

Biomolecular imaging and biomarker detection can be performed using fluorescent
nanomaterials and labels, a highly sensitive and selective method with adequate spatiotem-
poral resolution and low cost for application [148]. Numerous fluorimetric diagnostic tests
and fluorescent-based biosensors focused on biocatalyst behavior have been documented
using organic dyes, inorganic semiconductor quantum dots (QDs), and carbon nanoma-
terials as fluorimetric indicators [149,150]. The operation of these biosensors is based on
the fluorescence phenomenon that happens when a fluorophore or fluorescently labeled
molecule absorbs the corresponding electromagnetic radiation. According to the signal
generating technique in fluorescent biosensors, they are categorized into four types, includ-
ing FRET (Förster Resonance Energy Transfer), FLIM (Fluorescence Lifetime Imaging), FCS
(Fluorescence Correlation Spectroscopy), and FI (change in fluorescence intensity) [151].
The basis of fluorescence-based detection is shown in Figure 10. The main advantages
of fluorescence-based biosensors are extreme sensitivity, they are minimally invasive or
non-invasive, they have the ability to utilize fluorescence intensity and fluorescence lifetime,
and they provide the structure and microenvironment of molecules [152–154].
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For removing the technical obstacles of conventional organic labels, many fluorescence-
emitting nanomaterials such as dye-doped silica nanoparticles (DDSNs), fluorescent gold/
silver metal nanoclusters, lanthanide-doped nanomaterials, upconversion nanoparticles
(UCNPs), carbon nanomaterials, and fluorescent semiconductor quantum dots (QDs) have
been utilized in the fabrication of fluorescent biosensors [130,156]. Graphene nanomaterials
are favorable candidates for modification of fluorescent biosensors due to their high surface-
to-volume ratio and excellent distance-dependent fluorescence quenching capability on the
basis of FRET [149,157].

Even though the complete fluorescence mechanism of carbon nanomaterials is not
understood, various types of them such as carbon nanotubes, GO, RGO, GQD, CQD, etc.,
have been used in fluorescent biosensors [158–161]. Some of the carbon nanomaterials,
such as graphene and GO, are fluorescent quenchers because of their large electron plane
on the nanosheet, which performs FRET to quench fluorescence [162–164]. On the other
hand, multicolor GQD, CQD, and CNT offer robust fluorescence that makes them very
practical in optical biosensors [82]. The emission range of CNT is near-infrared, but the
main demerit is that the cytotoxicity of them is not thoroughly studied [82]. A significant
fluorescent feature of some CQDs and GQDs is their excitation-dependent emission; when
the excitation shifts from ultraviolet to near-infrared, GQD and CQD emit in the correspon-
dence wavelength [165–168], but many of them have a consistent emission peak even with
moving the excitation wavelength [169–171].

In 2015, Zhang et al. showed that with a nanofiber membrane with electrospinning
of Graphene Quantum Dots for dual-purpose fluorescent and electrochemical biosensors,
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the fluorescent intensity is almost uniform, which determines the excellent stability of
PVA/GQD nanofiber membranes [172].

Xu et al. designed a fluorescent aptasensor to detect four biomarkers of AFP, HER2,
CEA, and VEGF165 simultaneously in the living cell. GO sheets were modified by four
fluorophore-labeled aptamers, including FAM, Cy5, and AF405, and after the formation
of the aptamer–protein complex, these fluorophores detached from the GO sheet and
biomarkers were detectable by four different colors. This procedure proved to be rapid, bio-
compatible, and highly specific for the diagnosis of related cancers [173]. In other research,
Wang et al. fabricated a fluorescent nanobiosensor for detection of MUC1, CEA, and CA125
by using Ag/AuNCs and two types of AgNCs and related aptamers as biorecognition ele-
ments. Based on the designed biosensor, the standard treatment for MUC1 was established
in the presence of different concentrations (1.33 ng/mL, 2 ng/mL, 2.67 ng/mL, 13.3 ng/mL,
20 ng/mL, 26.7 ng/mL,133 ng/mL, 200 ng/mL), and as shown in Figure 11, the fluo-
rescence intensity of AgNCs-DNA1 gradually increases with increasing concentration of
MUC1. Thus, increasing F-F0 versus MUC1 showed a linear range of 1.33–200 ng/mL with
a correlation coefficient of 0.991 and a detection limit of 0.18 ng/mL in the signal-to-noise
ratio of 3. As a result, it shows the appropriate and high sensitivity of this medium for
measuring MUC1. The standard curves for CEA and CA 125 showed similar results. In this
study, GO played the role of the quencher and caused an increase in the fluorescent signal
of real samples with high sensitivity [174]. Wang et al. used the DNase I fluorescence
amplification method based on the reaction between Graphene Oxide (GO) and DNA
aptamer to detect colorectal cancer exosomes. They combined fluorescent-dye-conjugated
aptamers, Graphene Oxide, and DNase I enzymes in serum samples. Graphene Oxide
quenched the fluorescence of aptamers and fluorescence recovery after incubation with
samples containing the CRC exosome. DNA aptamers were placed on the surface of ex-
osomes by the DNase I enzyme, thus increasing the interaction between the fluorescent
aptamer probe and amplifying the signal [175].
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Figure 11. (A) Fluorescence spectra of the assaying model in the presence of varying concentrations
of MUC1. (B) The linear relationships between F-F0 and the concentrations of MUC1. Reprinted with
permission from ref. [174]. Copyright 2018, Elsevier.

In 2021, MA et al. reported that they used DNA nanomaterial attached to the GO
surface to detect liver tumors. To analyze the selectivity of target and non-target cells,
these cells were stained with and without GO by nanomaterial DNA. In the absence of
GO, the comparison between target and non-target cells was insufficient. However, in the
presence of GO, diffusion in non-target cells was very weak compared to target cells,
indicating the role of GO in the detection of target cells. In in vivo studies, the liver tumor
was stained well with the GO-based DNA nanomaterial. The studied system showed that it
is highly able to target liver cancer cells. It also works well in the detection of fluorescence
imaging of liver tumors and chemotherapy [176].
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5.4. Graphene-Based Electrochemical Biosensors

Electrochemical sensing essentially needs a reference electrode, a counter (auxiliary
electrode), and a working electrode, sometimes termed as the sensing or redox elec-
trode(Figure 12). The reference electrode, usually produced from Ag/AgCl, is held at length
from the reaction site to preserve a specified and consistent potential [177]. The working
electrode acts as a transduction component in the biochemical reaction, while the counter
electrode links the electrolytic solution so that the current can be delivered to the work-
ing electrode. These electrodes ought to be conductive and have chemical stability [178].
According to the Institute of Clinical and Laboratory Standards (CLSI; EP05-A3, EP24-A2,
EP25-A), a change factor (CV) of less than 10% is required for reproducibility, accuracy, and
stability. Therefore, further improvements in biosensors, especially in the case of electrodes
and intermediates, are two components that determine the reproducibility, accuracy, and
stability of all electrochemical biosensors [179]. Platinum, gold, carbon (e.g., graphite), and
silicone derivatives are thus widely utilized based on the analyte [178].
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A wide range of molecular identification elements can be used by electrochemical
biosensors to detect biomarkers. A number of advantageous electrochemical strategies for
detecting cancer biomarkers include techniques such as voltammetry (CV) [48]. The use
of two or three electrodes with a potentiostat in voltammetric methods makes it possible
to apply the potential and thus measure the current. In this method, designing the sur-
face structure of the biosensor is very important to identify the analyte, amplify specific
interactions, and suppress nonspecific interactions. In recent years, the use of nanomate-
rials and electroactive complexes in bioassays by electrochemical methods has provided
high sensitivity for biomarkers. These nanomaterials accelerate signal transmission by
creating a synergistic effect between catalytic activity, conductivity, and biocompatibility.
They prevent the effects of classical biosensors such as bio-enzymatic sensors and critical
microenvironmental factors [7]. The pairing of different bioreceptors with nanomateri-
als, the widespread levels of these nanomaterials, and the simplicity of electrochemical
detection techniques are some of the factors of the high compatibility of electrochemical
biosensors based on nanomaterials [181]. From a vast range of graphene-based nanomate-
rials, graphene metal nanoparticles, nanocomposites, metal alloy nanoparticles, magnetic
nanoparticles, nanowires, nanofibers, nanorods, carbon nanotubes, and carbon nanofibers
are more used. The presence of graphene in these nanomaterials has some advantages, such
as fast electron transportation, high thermal conductivity, good biocompatibility, and excel-
lent mechanical flexibility, which enhances the electrochemical biosensors’ function [182].
In electrochemical sensing, different electroactive bioreceptors can be used with high sen-
sitivity, and due to unique oxidized/reduced potential for each molecule, they also offer
high selectivity. Furthermore, graphene nanomaterials have a low residual current, wide
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potential window, and easy surface renewability, and because of their large overpotential
for O2 and H2 density on the edge-plane defect spots, they bring about a great deal of
electron transfer for biospecies [51].

Modification of electrodes with graphene-based nanomaterials also causes electro-
chemical species to distribute on the surface uniformly, and their 2D structure provides a
high surface-to-volume ratio, which results in a suitable substrate for detecting adsorbed
analytes. The electron transfer rate directly correlated with the exponential distance be-
tween the electrode surface and electrochemically active center of the bioreceptor, and
graphene-based modification can dramatically reduce this distance to facilitate the electron
exchange. This phenomena takes place on the edge of graphene sheets and/or at defects in
the basal plane by nanowiring between active electrochemical sites and electrode surfaces
to transfer electrons directly that promote sensing applications [183,184].

Akbari et al. designed an electrochemical biosensor for prostate cancer biomarker
detection using GO/Au nanostructures, and this article showed that the GO/AuNP com-
posite improves the electrical conductivity and biocompatibility [185]. Heydari et al. have
successfully designed a new electrochemical biosensor using an aptamer for early detection
of prostate-specific antigen (PSA) in human serum by using the RGO-MWCNT/AuNP
nanocomposite, and because of the presence of the RGO, the conductivity between the
nanocomposite improves, and LOD was equal to 1 pg·mL−1 [186]. A DNA biosensor based
on AuNP-modified GO for the diagnosis of breast cancer biomarkers for early diagnosis
was designed by Ayman et al. In this work, the electrochemical signal enhancement was
achieved via GO, and the presence of GO increased the surface area [187].

In 2020, Asadi et al. developed a graphene-modified glassy carbon electrode electro-
chemical biosensor to detect miRNA-21, a biomarker in early prostate cancer. A molecular
linkage agent was used to immobilize DNA on the surface of a graphene-modified glass car-
bon electrode. Charge transfer resistance (Rct) was measured by electrochemical impedance
spectroscopy before and after hybridization. The electrochemical biosensor demonstrated
a linear impedimetric response between ∆Rct and logarithm of miRNA-21 concentration
ranging from 10−14 to 10−8 M with a correlation coefficient of 0.972 and a detection limit
of 3 fM. The results show that the electrochemical biosensors of the graphene-modified
glass electrode can be used as an alternative to conventional methods for detecting the
early stages of cancer [188].

In 2021, Jozghorbani et al. investigated the diagnosis of carcinoembryonic antigen
(CEA) using a label-free electrochemical immunosensor to tether the antibody to the
electrode surface. In this study, CV and EIS techniques were used. They first coated the GC
electrode surface with RGO. The CV measurements were performed in a 0.1 M solution of
PBS (pH = 7.4) containing a 5 mM ferro-ferricyanide probe against the Ag/AgCl reference
electrode at a scan speed of 25 mV s−1 and in the range of +0.8 to −0.4 V. The redox
peak currents shown in Figure 13 were reduced by modifying the GC electrode with RGO.
In addition, the reduction of peak currents after incubation of the RGO/GC electrode with
anti-CEA antibody indicates that some of the electron transfer pathways are blocked, and
thus the charge transfer resistance is increased by the amidation reaction of the limited
antibodies to the Graphene Oxide functional groups. Finally, by immobilizing the CEA
antigen on the surface of the anti-CEA/RGO/GC immunosensor, the peak current was
reduced again, which could be due to the formation of a more insulating layer that prevents
the redox-active species from spreading to the electrode. Additionally, electrochemical
impedance spectroscopy was used to obtain a signal to determine the antigen concentration.
Finally, the CEA was immobilized on the surface of the anti-CEA/RGO/GC immunosensor.
EIS results, like the results of CV, showed that the current was attenuated, which could be
due to the block of the electron transfer pathways and the increase in the charge transfer
resistance (Rct). These results can be used as a good signal to determine the antigen
concentration [189].



Biosensors 2022, 12, 269 19 of 36Biosensors 2022, 12, x 21 of 39 
 

 
Figure 13. Cyclic voltammogram data recorded for (a) GCE, (b) RGO/GCE, (c) anti-CEA/RGO/GCE, 
and (d) anti-CEA/RGO/GCE biosensor incubated with CEA protein at a scan rate of 25 mV s−1 in a 
0.1 M PBS solution (pH 7.4) containing 5 mM of the ferro-ferricyanide probe. Reprinted with per-
mission from Ref. [189]. Copyright 2021, Elsevier. 

5.5. Graphene-Based Surface-Enhanced Raman Scattering (SERS) Biosensors 
In Raman scattering, photons inelastically lose (Stokes) or gain (anti-Stokes) energy 

because of molecular vibrational events and represent information about the molecular 
structure enabling in situ and real-time detection [190]. Surface-enhanced Raman scatter-
ing (SERS) is a subset of Raman scattering, a widely used sensing technique in which 
when the molecules are adsorbed on corrugated metal surfaces such as silver or gold na-
noparticles, inelastic light scattering by molecules is greatly improved [191,192]. By way 
of plasmonic nanostructures, it provides a million-fold improvement, making the effi-
ciency of detection down to the level of single molecules. Two different pathways, namely 
electromagnetic enhancement and chemical enhancement, accomplish SERS enhancement 
[193]. The design of the direct and indirect detection  SERS-based biosensor shown in 
Figure 14. 

In bioanalysis, SERS-based biosensors have the following advantages: (1) ability to 
represent biomolecules’ intrinsic fingerprint molecular information and ultra-high sensi-
tivity down to the single-molecule level; (2) narrow peak bandwidth relative to fluores-
cence spectroscopy with strong tolerance to photobleaching and photodegradation; (3) 
many ways to appeal to specific applications for signal enhancement substrates of varying 
sizes and shapes; (4) a greater depth of laser penetration enables both diagnosis and im-
aging in vitro and in vivo [194].  

Figure 13. Cyclic voltammogram data recorded for (a) GCE, (b) RGO/GCE, (c) anti-CEA/RGO/GCE,
and (d) anti-CEA/RGO/GCE biosensor incubated with CEA protein at a scan rate of 25 mV s−1

in a 0.1 M PBS solution (pH 7.4) containing 5 mM of the ferro-ferricyanide probe. Reprinted with
permission from ref. [189]. Copyright 2021, Elsevier.

5.5. Graphene-Based Surface-Enhanced Raman Scattering (SERS) Biosensors

In Raman scattering, photons inelastically lose (Stokes) or gain (anti-Stokes) energy
because of molecular vibrational events and represent information about the molecular
structure enabling in situ and real-time detection [190]. Surface-enhanced Raman scattering
(SERS) is a subset of Raman scattering, a widely used sensing technique in which when the
molecules are adsorbed on corrugated metal surfaces such as silver or gold nanoparticles,
inelastic light scattering by molecules is greatly improved [191,192]. By way of plasmonic
nanostructures, it provides a million-fold improvement, making the efficiency of detection
down to the level of single molecules. Two different pathways, namely electromagnetic
enhancement and chemical enhancement, accomplish SERS enhancement [193]. The design
of the direct and indirect detection SERS-based biosensor shown in Figure 14.

In bioanalysis, SERS-based biosensors have the following advantages: (1) ability to
represent biomolecules’ intrinsic fingerprint molecular information and ultra-high sensitiv-
ity down to the single-molecule level; (2) narrow peak bandwidth relative to fluorescence
spectroscopy with strong tolerance to photobleaching and photodegradation; (3) many
ways to appeal to specific applications for signal enhancement substrates of varying sizes
and shapes; (4) a greater depth of laser penetration enables both diagnosis and imaging
in vitro and in vivo [194].

One key downside of traditional silver-based SERS substrates is their low physical
stability due to oxidation, which has a strong effect on their sensitivity and quality of
efficiency. SERS-active metallic nanostructures are typically protected by a stable protective
coating or shield constructed from inert materials, such as metal oxides and carbon mate-
rials, to overcome this restriction [195,196]. Among them, graphene and graphene-based
derivatives, such as GO and RGO, are becoming favorable due to their stronger SERS
effects. The SERS signal enhancement observed is due to the contribution of a process of
chemical enhancement arising from the results of charge transfer between the graphene
substrate and the adsorbed molecules [191]. GO exhibits several distinctive Raman scat-
tering features such as the high-frequency D (disordered) and tangential mode (G-band),
which are sharp, obvious, and can easily be distinguished from fluorescence backgrounds,
making it a good Raman signal reporter [197,198]. However, the Raman signal of Graphene
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Oxide is weak and can be scarcely employed in Raman detection, but the Raman signal
of Graphene Oxide could be greatly enhanced when Graphene Oxide abuts noble metal
nanoparticles.
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Practical applications of SERS nanotags require SERS signal stability when nanotags
are exposed to the constant light of relatively high-power laser light. These SERS-related
problems limit the quantitative analysis of reading signals in sensor applications and pre-
vent the development of a reliable, quantitative SERS-based detection platform. Therefore,
the protection and stabilization of SERS nanotags are key factors in the development of
reliable diagnostic assays. Smolski et al. showed that following the formation of an encap-
sulating layer on Raman molecules at the surface of gold nanoparticles improves signal
stability in the long-term exposure to intense laser light. Modified molecules have higher
SERS intensities and therefore show their stability over time [199].

In addition, several intriguing properties, such as high optical transparency, high
carrier mobility, chemical inertness, and biological compatibility, are often combined with
graphene and its derivatives [196]. A variety of processes, such as coating, simultaneous
assembly of graphene and nanoparticles, or deposition of noble metal nanostructures on
top of a pre-deposited graphene layer, have demonstrated advances in SERS efficiency with
the integration of graphene or its derivatives into SERS-active substrates. Sub-picomolar
analyte detection capabilities have been enabled by structures with a monolayer of graphene
sandwiched between beam-lithography-produced Ag nanostars and Au nanoparticles [191].
The simultaneous assembly of GO nanoplatelets with shape-controlled AgNPs (octahedra)
was shown to produce hybrid materials that improved up to 3-fold the SERS signal [200].
One of the largest SERS enhancement ratios recorded to date for graphene–metal systems
(1700-fold), which was almost 115 times and 14 times larger than that of graphene on Ag
film and graphene on Ag nanoparticles, was shown to give a nanoparticle-film gap (NFG)
system created with graphene acting as a sub-nanospacer between an Ag film and Ag
nanoparticles [201].

Yi et al. developed an SERS-based biosensor to detect tumor cells. In this system, RGO
was sandwiched between Ag and Au nanostructures. The Ag-RGO-Au system has a strong
chemical mechanism due to the charge transfer between RGO and the target molecules.
The SERS sensor based on Ag-RGO-Au was tested for sensitive detection of tumor cells
in the presence of human tumor cells, liver cancer cells (BEL-7402), and normal human
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liver cells (202 liver cells). Tumor cells do not show a characteristic signal in the range
of 1000–3200 cm-1 in the Raman spectrum on the Si slide. Placing labeled tumor cells on
the Ag-RGO-Au substrate causes significant differences in the Raman spectrum that may
indicate tumor cells. In addition to the changes in the width and shape of peaks D and G
compared to the peaks for Ag-RGO-Au, the intensity of the peaks also increases. Especially
for peak D, there is a clear shift in the 25 cm−1 wave number as well as spectral narrowing.
The chemical interaction between RGO and tumor cells can be seen from the distortion
at the characteristic peaks of graphene. In connection with the chemical mechanism of
RGO, the Ag-RGO-Au system has also been used to identify tumor cells without the use
of biomarkers. The results showed that free-labeled tumor cells and normal cells, due to
interaction with RGO located on the Ag-RGO-Au substrate, could be characterized by
Raman changes at specific peaks). The results are shown in Figure 15) [202].
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Raman spectra of tumor cells (7402, red circle) and normal live cells (202, black square) on the silicon
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RGO on Au nanostructures, GFP labeling tumor cells on Si slide, GFP labeling tumor cells on G-SERS
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normal live cells (202, blue solid line) in (a) on our G-SERS substrate (green dash dot line). Reprinted
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In 2018, Liang et al. used a label-free graphene/gold nanopyramid-based SERS
biosensor to detect colon cancer p53 −/− cells from p53 +/+ colon cancer cells. The
hybrid SERS biosensor is capable of detecting p53 −/− cells from the p53 +/+ cells of
three different cell states, live, dead, and burst, with an average 81% sensitivity and 97%
specificity. These results show the potential of this SERS graphene hybrid for cancer
detection [203].
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5.6. Graphene-Based Electrochemiluminescent Biosensors

Electroluminescence or electrogenerated chemiluminescence (ECL) is the shared area
of electrochemistry and chemiluminescence (CL). In this mechanism, by applying a poten-
tial on the electrode’s surface, the electrochemical energy is being converted to radiative
energy [204–206]. This phenomenon can happen by utilizing species that undergo electron
transfer reaction to form an excited state and, after that, produce light when molecules
return to the ground state [207,208]. Therefore, ECL does not need external light sources,
so problems of light scattering inherent in photoluminescence (PL) can be avoided [206].
In the ECL method, the electrochemical reactions take place through the interplay of the
luminophore and a co-reactant molecule by applying only one single potential step. Two
approaches to the co-reactant ECL mechanism are available. The first one is the oxidative re-
action, in which a potent reducing radical agent is produced by oxidation of the co-reactant
in a homogeneous follow-up reaction. This radical can reduce the oxidized luminophore,
so the luminophore becomes excited and emits light. The second one is reductive oxidation,
in which the reduction takes place straightforwardly [209].

Due to the convergence of electrochemical and spectroscopic approaches, ECL has
many benefits over chemiluminescence and photoluminescence, such as improved tempo-
ral and spatial modulation of light emission, high sensitivity due to lack of light excitation
and a wide dynamic range, and fast detection in a low volume of sample. Furthermore,
ECL has been successfully used for diagnostic purposes in real samples and complex
matrices such as blood, urine, and cell lysates because of its remarkable signal-to-noise
ratio (S/N) [209].

Nanoparticles possess outstanding electrochemical, photonic, and magnetic properties
that make it possible for ECL sensing designs to be superior transducers [210,211]. Due to
influences such as its high quantum Hall effect and electron–hole symmetry, graphene
and its derivatives exhibit extraordinary electrical conductivity [212,213]. In order to
enhance electrical efficiency, the two-dimensional RGO can be modified, and overall, the
nanobiosensor displayed strong magnetism, ECL properties and biocompatibility, and
low toxicity. In addition, in terms of linear range, stability, reproducibility, selectivity,
and sensitivity, the high analytical output is demonstrated by the nanobiosensor [214].
GO-based ECL aptasensing is shown in Figure 16.
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Although the exact PL process of CQDs and GQDs is still argumentative, π-plasmon
and surface or edge defects are related to the broad optical absorption and photolumines-
cence emissions of carbon-based QDs. The few PL colors and poor quantum yield are still
the main shortcomings of CQDs and GQDs in sensing applications. In addition, surface
passivation may also impact CQDs’ ECL behaviors. The oxidized CQDs have outstanding
ECL behaviors without any surface passivation from a top-down technique. However, the
CQDs passivated via a bottom-up route with some capping reagents, displaying erratic ECL
signals with elevated background interference [215]. CDs were immobilized on graphene in
the CDs/S2O8

2− system, which could promote both C•− and SO4
•− production in the ECL

system to produce more C*+, resulting in an almost 48-fold amplification of the ECL [216].



Biosensors 2022, 12, 269 23 of 36

After reviewing the types of graphene-based biosensors, Table 2 compares the different
techniques for detecting cancer biomarkers.

Table 2. Comparison of different cancer biomarkers detection techniques.

Method Interface Biomarker LOD Dynamic Range Type of Cancer Ref.

FET RGO/streptavidin (SA)
Biotinylated
microvesicles
(B-MV)

20 particles·µL−1 105 to 106

particles·mL−1 Various cancers [217]

FET
pSF/GO-
TAPP/RGO/aptamer
(AS1411)

MDAMB-231 - 10 to 106

cells·mL−1 Breast cancer [218]

FET GOSS/pentacene/HER2
antibody SkBr3 cells 100 cells·µL−1 - Breast cancer [219]

FET G/PBASE/anti-AFP α-fetoprotein
(AFP) 12.6 ng·mL−1 44.9 to 784.9

ng·mL−1
Hepatocellular
carcinoma [220]

FET G/MWCNT/aptamer CA125 0.5 nU·mL−1 10−9 to 1 U·mL−1 Ovarian cancer [125]

FET Ab-MGLA/poly-SiNW APOA2 protein 6.7 pg·mL−1 19.5 pg·mL−1 to
1.95 µg·mL−1 Bladder cancer [221]

FET RGO/Ab PSA-ACT 100 fg·mL−1 102 to 109

fg·mL−1 Prostate cancer [124]

SPR GO-COOH CA199 10 unit·mL−1 - Pancreatic cancer [222]

SPR G/FA folic acid protein
(FAP) 5 fM 5 to 500 fM Prostate cancer [223]

SPR Au/Cys/GO/COOH/Ab cytokeratin 19
(CK19) 1 fg·mL−1 0.001 to 100

pg·mL−1 Lung cancer [103]

SPR Au/Cys/Carboxyl-GO-
Peptide hCG protein 1.15 pM 1.15 to 28.7 pM Choriocarcinoma [224]

SPR
Cr/Au/cys/Carboxyl-GO-
anti PAPPA2
protein

PAPPA2 protein 0.01 pg·mL−1 0.1 to 10,000
pg·mL−1 Choriocarcinoma [225]

SPR

Anti-CEA pAb/Au-Anti
Mouse IgG-PDA-RGO and
POEGMA-co-GMA-anti-CEA
mAb

CEA 500 pg·mL−1 0 to 16 ng·mL−1 Various cancers [226]

SPR

Au/POEGMA-co-GMA-
Mouse anti-AFP and
Anti-Rabbit
IgG-RGO/Ag/Rabbit
anti-AFP

α-fetoprotein
(AFP) 100 pg·mL−1 1 to 100 ng·mL−1 Hepatocellular

carcinoma [227]

SPR Apt/AuNP/GO ssDNA 0.2 fM 10− 15 to 10−11 M Breast cancer [228]

Fluorescence GO/aptamer/FAM+Dnase I MUC1 10 pg·mL−1 50 pg·mL−1 to
100 ng·mL−1 Breast cancer [229]

Fluorescence UCPs–aptamer–CNPs CEA - 0.1 to 40 ng·mL−1 Various cancers [230]
Fluorescence GQD-CuNC/aptamer HTLV-I DNA 10 pM 20 pM to 12 nM Leukemia [231]

Fluorescence HE4 antibody/red and green
GQDs HE4 4.8 pM 4.8 pM to 300 nM Ovarian cancer [232]

Fluorescence CNSs/P0-FAM MUC1 25 nM 0 to 6 µM Breast cancer [233]
Fluorescence Apt/UCNP/GO CEA 10.7 ng·mL−1 0.03 to 6 ng·mL−1 Various cancers [234]
Fluorescence GQD-PEG-aptamer/MoS2 EpCAM protein 450 pM 3 to 54 nM Various cancers [235]
Fluorescence Apt/FAM/GO PSA 0.76 pg·mL−1 1 to 100 pg·mL−1 Prostate cancer [236]

Fluorescence Apt/GelRed/GO PSA 10 pg·mL−1 100 pg·mL−1 to
200 ng·mL−1 Prostate cancer [237]

Fluorescence Apt/FAM/GO VEGF 0.256 nM 0.5 to 5 nM Various cancers [238]
Fluorescence Apt/FAM/GO VEGF 1 pM 5 to 200 pM Various cancers [239]
Fluorescence Apt/FAM GO AFP 0.909 pg·mL−1 1 to 150 pg·mL−1 Various cancers [240]

Fluorescence Apt/DNA GO Exosomes 2.1 × 104

particles·µL−1 - Colorectal cancer [139]

Electrochemistry FA/GAM/OA Liver cancer cells 5 cells·mL−1 5 to 105

cells·mL−1
Hepatocellular
carcinoma [241]

Electrochemistry FA/CuO/WO3-GO AGS cancer cell 18 cells·mL−1 50 to 105
cells·mL−1 Gastric cancer [242]

Electrochemistry AuPd-ANPs/GQDs/ACF Hydrogen
peroxide 500 nM 1.0 µM to

18.44 mM Breast cancer [243]
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Table 2. Cont.

Method Interface Biomarker LOD Dynamic Range Type of Cancer Ref.

Electrochemistry MnO2/NWs/AuNPs/GF Hydrogen
peroxide 1.9 µM 0.01 to 9.51 mM Breast cancer [244]

Electrochemistry SS-probe/GO/GNR miRNA-155 0.6 fM 2.0 fM to 8.0 pM Breast cancer [245]

Electrochemistry Mucin1 antibody-
MB@GO-COOH-SPCE Mucin1 0.04 U·mL−1 0.1 to 2 U·mL−1 Various cancers [246]

Electrochemistry SRGO-HD 8-OHdG 1 nM 20 to 0.002 µM Various cancers [247]

Electrochemistry FA/Glu-GQD-Pd@Au HepG2 2 cells·mL−1 3 to 105
cells·mL−1

Hepatocellular
carcinoma [248]

Electrochemistry GO/AuNPs/Ab1
GO/AuNPs/Ab2

tPSA
fPSA

0.2 ng·mL−1

0.07 ng·mL−1

2 to 10 ng·mL−1

0.1 to 2.2
ng·mL−1

Prostate cancer [185]

Electrochemistry Au/RGO/FA folic acid protein
(FAP) 1 pM 1–200 pM Prostate cancer [249]

Electrochemistry Au/RGO FA 1 pM 1 to 200 pM Various cancers [249]
Electrochemistry Graphene/PBSE miRNA-21 3 × 10−15 M 10−14 to 10−8 M Prostate cancer [188]

Electrochemistry Au/GO PSA
0.028 ng·mL−1

and 0.007
ng·mL−1

0.5 to 7 ng·mL−1 Prostate cancer [109]

SERS

AgNPs/GO/Ab and
biotinylated
Ab/streptavidin-labeled
Glucose oxidase

PSA 0.23 pg·mL−1 0.5 to 500
pg·mL−1 Prostate cancer [104]

SERS MWCNT/thionine-NH2-
RGO−COOH-Ab PSA 2.8 fg·mL−1 10 to 20 ng·mL−1 Prostate cancer [250]

ECL Anti-CEA/Au-FRGO-
CeO2@TiO2

CEA 3.28 fg·mL−1 0.01 to 10
ng·mL−1 Various cancers [251]

ECL Anti-CEA/HM-GQDs-
AuNPs CEA 0.01 ng·mL−1 0.02 to 80

ng·mL−1 Various cancers [252]

ECL GCE/PPy-NH2GO-
Ag2Se@CdSe-Ab/BSA CA72-4 2.1 × 10−5

U·mL−1
10−4 to 20
U·mL−1 Gastric cancer [253]

ECL RGO/Au-CdS:Eu QDs/Ab α-fetoprotein
(AFP) 0.05 pg·mL−1 0.00005 to 1.0

ng·mL−1
Hepatocellular
carcinoma [254]

ECL Au-CdS/capture DNA-PSA
aptamer/Fc-G PSA 0.00038 ng·mL−1 0.001 to 25

ng·mL−1 Prostate cancer [255]

ELISA PBS/hydrochloric acid/BSA nivolumab 3.0 µg·mL−1 100 ng/mL–200
µg·mL lung cancer [256]

6. Challenges and Opportunities for Graphene-Based Biosensors

Recent advances in the development of biosensors were discussed in this study. Recent
research on biomarkers over the past decade has shown that biosensors can detect cancer in
the early stages with minimal amounts of biological material and various diagnostic meth-
ods. Despite the invention of various biosensors, all of these sensors still have advantages
and disadvantages. Powerful portable and user-friendly biosensors still have challenges
as long as they become a reliable diagnostic method for cancer diagnosis. Challenges
and future prospects in this field are rapidly being explored and developed. The issue
is, what has led to the rapid progress in this area? Most research refers to nanomaterials
or nanoscale measurements, or in many cases both, as the cause of rapid progress. Re-
search and developments of current nanobiosensors are focused on reducing the mentioned
problems such as high sensitivity and selectivity, accuracy and precision, and cost reduc-
tion. Hence, various methods have been used to minimize the challenges in biosensors.
The most important solution proposed is the integration of different mechanical, electrical,
chemical, and biological systems using special nanomaterials. If this sequential process
occurs, the new diagnostic nanobiosensors could be extended to highly sensitive cells for
cancer diagnosis and treatment without serious side effects [99].

Limit of detection (LOD) is a critical performance characteristic that requires careful
evaluation during method validation. LOD is generally expressed as the amount of analyte
that the analytical method detects in at least 95% of cases. Cancer dosage markers may be
very low, so the use of high-LOD methods puts the researcher at risk of negative diagnosis.
Very low LODs allow the detection of target biomarkers without enzymatic amplification.
Therefore, the development of new techniques with selectivity, sensitivity, and low limit
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of detection (LOD) is very important in routine diagnosis [257]. For this purpose, many
alternative analytical methods, such as graphene-based biosensors with higher sensitivity,
have replaced conventional methods such as PCR and ELISA. One of the most important
roles of nanomaterials is to pre-concentrate the analyte and lead it to the detector. The high
load of diagnostic species on the nanoparticles facilitates bonding. Nanoparticles also
provide the ability to detect lower amounts of analytes. This function makes it possible to
measure fluids with lower analyte concentrations, which is not possible with most existing
sensors [258].

In this regard, Hussein et al. reported in 2019 that the limit of detection (LOD) of
the biosensor was about 2 ng/mL, which is 50 or 60 times lower than the detection of
antigen by ELISA treated with gold nanoparticles (LOD = 100 ng/mL) and conventional
ELISA [259].

Circulation of tumor cells (CTCs), found in the peripheral blood of cancer patients,
can be used to detect cancer early. With CTCs, 1 cell per 10 mL can be important, while
for pathogens, it can be one microbial species per liter in water quality analysis. Larger
volumes pose more challenges for biosensors because these low concentrations require
multiples of the sample to be analyzed. Such large volumes can be challenging even for
microfluidics, although the separation of CTC by Warkiani et al. solves the higher volume
challenge [260].

In this regard, Pudineh et al. examined the heterogeneous phenotypes of circulating
tumor cells (CTCs) in whole blood to discover the complex and dynamic features of these
potentially vital clinical markers. This task is challenging because these cells are present at
parts per billion levels among normal blood cells. To characterize CTCs, they developed
a new method based on nanoparticle activation called cytometry. Accordingly, it indexes
CTCs based on their superficial expression phenotype. They used a microfluidic chip to
process whole blood samples [261]. It is this ability to measure very small amounts of
analyte that guarantees a bright future for measurement research.

In addition, to solve the mass transfer problem using dispersed electrodes for PSA
detection, Wu et al. compared the performance of finite dispersible electrodes with a similar
sensor prepared in the same way on a normal flat electrode. The dispersible electrodes
were used to solve the problem of mass transportation with very low detection sensors.
This features the detection limit from the flat sensor to the dispersible electrodes reduced
from 7.05 pM to 3.0 fM. Similarly, detection limits of up to 15fM or even lower have been
reported for a signal increase [258].

Ideally, for graphene-based biosensors, we need sensors with high response to the
target analyte or molecule that have little or no response interference species. To achieve
this goal, more working probes must be used to improve the detection of the target analyte
or molecule [262]. Despite recent advances, nanomaterial-based electrochemical bioassay
still faces serious challenges, including:

1. Stability of nanobiosensors in electrodes.
2. High sensitivity of biosensors to changes in environmental and medical conditions.
3. Ability to reuse nanobiosensors.
4. Problems caused by biocompatibility or non-toxicity to the environment.
5. Complex technology for making electrochemical nanobiosensors.
6. The complexity of the interaction method of nanomaterials and biomolecules.
7. Processing, creating special features, and connection problems.
8. Access to high-quality nanomaterials and the nature of these nanoscale compounds

on the electrode plate [99].

Reproducibility, controllability, and scalability are other challenges that need to be
overcome. Detecting cancer biomarkers in real samples such as blood plasma, etc., is also a
challenge. Because real samples have different proteins, ions, and chemical species, they
can be misdiagnosed. One possible way to solve this problem is to disable the sensor
surface with an antifouling agent to focus on the target [263]. Thus, as discussed in the
properties of nanomaterials, given the ability of graphene-based biosensors to combine



Biosensors 2022, 12, 269 26 of 36

their outstanding chemical and physical properties, it seems to be a turning point in the
long road to achieving early and efficient cancer diagnosis. Despite great progress, there
are still challenges to overcome. In the near future, it is hoped that graphene-based devices
will be developed that can detect multiple cancer biomarkers simultaneously.

7. Conclusions

Today, biosensors are used as a sensitive and rapid diagnostic tool in the early de-
tection of cancers. In addition to making early diagnosis and treatment options more
accessible to patients and improving their quality of life, biosensors can develop multiple
sensors, differential and semi-selective, that can measure multiple markers in a single unit.
The biosensors are able to read direct responses as positive and negative responses of bio-
logical fluid, including biomarkers, and also lack limitations such as throughput limitations
and small sample volumes. Because circulating cancer biomarkers are generally found in
small amounts in the background of non-target cells, EVs, and biomolecules, the combina-
tion of magnetic nanomaterials and electrochemical biosensors is appropriate to overcome
this diagnostic challenge. The use of nanomaterials in the manufacture of biosensors for the
detection of biomarkers is significant because these cases increase the range of detection
and increase the sensitivity of the biosensor. Graphene and its derivatives (GO, RGO,
GQDs) are used in the fabrication of biosensors because of their high surface area, optical
properties, and high thermal and electrical conductivity. In this study, the methods of syn-
thesis of graphene and its derivatives were investigated. Oxidative exfoliation-reduction,
CVD, and LPE have a high potential for industrial implementation. Finally, in order to
synthesize graphene, the environmental hazards, cost, and quality of synthesized graphene
should be considered. The use of graphene-based materials for biosensing has achieved
great success in a short time. Recent studies in this literature review indicate that, among
various detection methods, electrochemical graphene-based cancer biosensors are the best
option, due to their high sensitivity in a rapid assay. Graphene-based biosensors show high
sensitivity and can be employed for the detection of cancer, and graphene is a super new
material for biosensing. The future development direction of graphene-based biosensors
should be more portable, reproducible, miniaturized, and high-throughput in detection,
and the future development of these 2D graphene nanomaterials will be further developed
and tailored for the specificity of receptors.
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